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Multiparticle dynamics in the E- φ tracking code ESME
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Fermi National Accelerator Laboratory1

Abstract. ESME has developed over a twenty year period from its origins as a program for modeling rf
gymnastics to a rather general facility for that fraction of beam dynamics of synchrotrons and storage rings
which can be properly treated in the two dimensional longitudinal phase space. The features of this program
which serve particularly for multiparticle calculations are described, some uderlying principles are noted, and
illustrative results are given.

INTRODUCING ESME

Multiparticle tracking has established utility for model-
ing evolution of longitudinal phase space distributions of
particles in accelerators as they respond to the rf in accel-
eration or bunch manipulation. ESME has been primar-
ily developed for design studies of machine cycles and rf
gymnastics using single particle equations of motion.

One goes from single particle to multiparticle dynam-
ics by calculating the beam current every time step and
including its effect on the single particle motion. How-
ever, the number of macroparticles needed and band-
width required for quantities in the frequency domain
need careful attention. It is very easy to generate spectac-
ular spurious instabilities by long time steps or too few
macroparticles. Considerable attention has been given in
recent years to these considerations and to development
of facilities for multiparticle dynamics.

Space Charge Model

The self-impedance from the direct interparticle forces
is derived from an electrostatic calculation in the beam
rest frame transformed to the lab frame.[1] The force
at then-th time step arises from the gradient of the az-
imuthal charge distributionΛn(Θ), which can be eval-
uated from its Fourier series for the frequency domain
or directly for time domain. The impedance representing
the self force is
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whereZ0 =
√

µ0/ε0 = 377Ω andg is a factor containing
the dependence on beam and vacuum chamber transverse
dimensions. For a uniform cylindrical beam of radiusa
centered in a smooth beampipe of radiusb

g = 1+2log(
b
a
) . (2)

In ESME this factor is scaled with beam momentum to
account for the change in beam radius and rolled off at
very high frequency to approximate the exact solution at
high mode numbers.

Frequency Domain Facilities

ESME is fundamentally time domain, but beam cur-
rent and image currents can be Fourier analyzed at har-
monics of synchronous circulation frequencyΩs,n. At
the end of then-th time step the beam has an azimuthal
charge distributionΛn(Θ). Assuming that the distribu-
tion is practically unchanged in a single time step (usu-
ally one beam turn), it gives rise to a beam current

Ib,n(Ωs,nt) =
eΩs,n

2π ∑
m

Λm,nei(−mΩs,nt+ψm,n) , (3)

here expressed as a sum of phasors.
The current induces voltage through the total longi-

tudinal coupling impedanceZ||(ω); this quantity evalu-

ated atmΩs,n is denoted by the phasorZm,neiχm,n. The
beam-induced voltage is applied to each particle at time
tn when the synchronous particle is at the gap; that volt-
age depends on the relative phase between the particle
and the current. The synchronous particle is defined to
have phase 0. Thus, the energy increment for thei-th par-
ticle on then-th turn resulting from the beam current is

eVb
i,n = −Ne2Ωs,n

2π ∑
m

Λm,nZm,nei(mΘi,n+ψm,n+χm,n) . (4)
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The apparent absence of frequencies other than circula-
tion harmonics is not a defect in this formulation. Syn-
chrotron sidebands are generated in the tracking the same
way they are generated in a synchrotron — by the phase
modulation.

Time Domain Facilities

The gradient ofΛ is calculated at each particle location
by cubic spline interpolation over three bins of a charge
histogram. For simple resonances, a Green’s function so-
lution is used which permits turn-to-turn accumulation
of the wakefield. The wakefield for arbitrary distribu-
tion and arbitraryZ‖ is calculated using the response to
triangular unit current pulse calculated by TCBI or the
like convolved with the current distribution. One may
freely inter-mix potentials expressed in time domain and
frequency domain. The calculation of bunch disruption
occurring with heavy transient beam loading corrected
by feed forward and feedback around the cavities plus
global phase and voltage feedback loops, for example, is
an application which would draw on nearly all of these
features.

Scaling Concept

By inspection of the single particle equations of mo-
tion, it appears that the phase space motion can be ac-
celerated by scaling the phase slip factorη and the po-
tential by the same factor, hereafterλ .[2] Both the single
particle and collective potential are scaled the same. In-
deed, particle distributions have been practically identi-
cal when timet in an un-scaled calculation is compared
to timet/λ in a scaled calculation for a variety of test cal-
culations. The obvious gain is a factorλ−1 in computing
time by speeding up the clock in the scaled calculation.
However, more importantly, scaling of the time means
that frequencies like the rf frequency and resonance fre-
quencies inZ‖ are also scaled. The frequencies of Fourier
components are scaled, and, forλ > 1, fewer harmonics
are needed to span the range of a givenZ‖(ω). For a par-
ticularly interesting example consider the space charge
equivalent impedance; it is nearly linear in frequency so
that just a few Fourier harmonics would appear necessary
to characterize it. The evaluation is not compromised by
widely spaced frequency sampling. Because the number
of macroparticles can be scaled byλ−3 when the num-
ber of bins is reduced byλ−1 with same level of numer-
ical noise, there is a potential gain from scaling ofλ 4

in many cases. This cubic rule for macroparticle num-
ber has been shown rigorously for space charge in time
domain[3] and heuristically in frequency domain for any
smoothZ‖(ω)[4]

DEMONSTRATION APPLICATIONS

The two examples following are chosen for their sugges-
tivity rather than as exhibits of results of special impor-
tance in themselves. Nonetheless, the first example, self
bunching of a coasting beam, may surprise even some
experienced beam physicists.

Coasting Beam Self-Bunching

Excitation of a passive resonator by coasting beam
and beam response to the resonant voltage is an archety-
pal multiparticle dynamics problem. One expects that
beam will self-bunch above threshold, with the bunches
decelerated from the initial beam energy. This exam-
ple illustrates that bunching is dependent on the rela-
tion of resonant frequency to nearest harmonic of beam
circulation frequency. Animations using parameters of
the Los Alamos PSR with addition of an h=3 resonator
(Rshunt= 300 Ohm,Q = 100) show a distinctly differ-
ent qualitative behavior depending whether the resonant
frequency is one percent above or below three times
the beam circulation frequency. The distributions after
160 ms are shown in Figs. 1 and 2; animated GIF’s
may be viewed atwww-ap.fnal.gov/~jmaclach
as psr3hi.gif and psr3lo.gif. In either case, mean energy
is decelerated equally, in buckets when the resonance is
above the beam circulation harmonic or by phase dis-
placement with empty buckets when it is below. The
analogy to Robinson instability (h=1) is suggestive.

Negative Mass Instability

Attempts to compare the Hardt[5] analysis of nega-
tive mass instability (NMI) to numerical tracking have
run up against particle statistics problems deriving from
computer speed and memory limitations. The relaxation
of these constraints because of computer developments
invites another look. Furthermore, time scaling should
ameliorate both time and storage problems. In addition,
numerically quiet distributions of a reasonable number
of macroparticles can be (at least initially) even quieter
than the real beam distribution.

Several cases based on the Fermilab Main Injector
(FMI) have been calculated to explore the effects of com-
putational parameters; some results are given in Table 1.
The maximum growth rate occurs near 60 GHz regard-
less of time/bandwidth scaling, much below the 120 GHz
predicted by Hardt’s model. The two orders of magni-
tude difference between the growth for 0.2 and 0.3 eVs
is consistent with the threshold of just below 0.3 eVs cal-
culated with Hardt’s formulas. The amount of emittance
growth is comparable but less with scaling factorλ > 1,
a discrepancy not observed in previous uses of time scal-
ing. Fig. 3 shows the spectrum of the beam current over
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the frequency range 21 to 74 GHz taken at intervals of 88
µs. The rapid shift of the peak to lower frequency may
relate to the discrepancy between the analytical predic-
tion and the lower peak frequency observed,viz., the shift
may progress substantially before the instability is visi-
ble on a linear amplitude scale. Computers are now fast
enough and big enough that a calculation could be done
for a physically interesting case with the actual number
of particles in a bunch, thereby eliminating any question
about scaling or numerical noise.

PARTING THOUGHTS

Particle tracking of the evolution of a distribution is
not in general superior or inferior to solving the Vlasov
equation — simply different. Numerical modeling in
dynamics is especially helpful to look for gross over-
sights, carry practical calculations beyond threshold,
evaluate the result of the simultaneous action of several
processes, and to get a quick check on expectations.
Graphical output from macroparticle models can com-
municate results easily to non-experts. Also it’s nice to
get an easy reality check during a protracted calculation;
reasonably well-tested codes are a useful source of
comparisons or benchmarks.

Table 1. Emittance growth∆ε/ε and frequency of
strongest Fourier componentf̂ [GHz] in NMI of 4.5 ·
1010 proton FMI bunches of full emittanceε [eVs].
Model parameters are number of macroparticlesnp[106],
number of charge binsnb, and time scaling factorλ . See
text for other parameters.

ε np nb λ ∆ε/ε f̂

0.2 128 4096 1 0.222 58.3
0.2 16 2048 2 0.112 58.3
0.3 128 4096 1 0.003 42.4
0.5 128 4096 1 0.000 none

Figure 1. Coasting beam response with parameters
like Los Alamos Proton Storage Ring with added passive
cavity tuned 1%abovethe third harmonic of the circula-
tion frequency; see text for parameter details

Figure 2. Coasting beam response to the same cavity
used for the Fig. 2 result, except tuned 1%belowthe third
harmonic of the circulation frequency

Figure 3. Fourier spectrum at times separated by 88
µs for 0.2 eVs FMI bunch of 4.5 · 1010 protons just
above transition (η = 8.9 ·10−5) The abscissa is labeled
in harmonics of the 53 MHz rf; the frequency span shown
is 21 – 74 GHz.
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